

Materials Science and Technology

Understanding Laser Powder Bed Fusion of Stainless Steel: Importance of Considering the Complex Marangoni Effect

Jian Yang^{1,2}, Lucas Maximilian Schlenger³, Milad Hamidi Nasab³, Steven Van Petegem⁴, Federica Marone⁵, Roland E. Logé³, Christian Leinenbach^{1,2,*} ¹ Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland

² Laboratory for Photonics Materials and Characterization, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

³Laboratory of Thermomechanical Metallurgy (LMTM) – PX Group Chair, École Polytechnique Fédérale de Lausanne (EPFL), 2002 Neuchâtel, Switzerland

⁴ Structure and Mechanics of Advanced Materials, Paul Scherrer Institute, PSI, Forschungs-strasse 111, Villigen 5232, Switzerland

⁵ Swiss Light Source, Paul Scherrer Institut, PSI, Forschungsstrasse 111, Villigen 5232, Switzerland

1 Introduction

- In general, Laser powder bed fusion (LPBF) operates near the conduction-keyhole threshold to avoid pore defects. Understanding the melt pool dynamics in this regime is essential for process optimization.
- However, observing the melt pool behavior in this regime is challenging, even with synchrotron X-ray imaging, due to the lack of contrast from keyhole and pores.
- The objective of this work is to visualize and quantify LPBF melt flow using in-situ synchrotron X-ray imaging with tungsten tracers, providing reliable data for calibrating computational fluid dynamics (CFD) models.

2 Methods

 In-situ synchrotron X-ray imaging is employed using the MiniSLM machine [1] in TOMCAT beamline at PSI.

• The material is commercial SS136L powder added by 3 wt.% tungsten particles as tracers.

3 Results

- 3.1. Experiment
- Surprisingly, strong inward flow dominates the melt pool.

· Mechanism: complex Marangoni effect due to oxygen content.

3.2. Modeling

· Implementation in CFD modeling and validation

• Extension to higher scanning speed

Chemical composition in wt. % of 316L powder

С	Cr	Ni	Mn	Мо	Cu	Р	Si	Ν	S	0	Fe
0.01	17.60	12.88	1.40	2.43	0.04	0.011	0.51	0.08	0.004	0.05	Bal.

 The melt flow is quantified by automatic particle identification and tracing protocol.

4 Conclusion

- The presence of inward Marangoni flow in LPBF with commercial stainless steel
- The complex Marangoni effect plays an important role in melt pool dynamics of LPBF

References

 S. Hocine, S. Van Petegem, U. Frommherz, G. Tinti, N. Casati, D. Grolimund, H. Van Swygenhoven, A miniaturized selective laser melting device for operando X-ray diffraction studies, Addit. Manuf. 34 (2020) 101194, https://doi.org/ 10.1016/j.addma.2020.101194.
C.X. Zhao, C. Kwakernaak, Y. Pan, I.M. Richardson, Z. Saldi, S. Kenjeres, C. R. Kleijn, The effect of oxygen on transitional Marangoni flow in laser spot welding, Acta Mater. 58 (2010) 6345–6357, https://doi.org/10.1016/j. actamat.2010.07.056.

