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Motivation * Tailoring of nanoparticle yield and morphology through substrate bias
* Enable use of Gas Aggregation Source for production of metallic « Gain insight into phenomena degrading catalytic performance

nanoparticles as catalyst for CO, reduction in gas diffusion electrode « |mprove stability and product selectivity of catalyst over time
(GDE)
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Size between 1 and 100 nm
considered as nanoparticles (NPs)
Properties between single atoms
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 Magnetron Sputtering in around 1mbar Ar atmosphere
— Nucleation of nanoparticles (NPs) through
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Mass filtering via
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(discrete energy states) and bulk materials Figure 1: TEM micrograph of 3-body collisions » . Nqu:jg:u[gglfiea:nn?:]s Her (QMF)
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Possible practical applications include: Cu NPs that were size- until critical radius (= 10nm) |
— Catalyst material (fuel cells, CO2-reduction), filtered at 8nm (provided by . . i , -
nanocomposites [1] Michael Burtscher). * Particles charge in plasma - Mass spectrometry and  Figure 2: Top: Sketch E e
P T : C : filtering possible of NP synthesis S ol
Some challenges with nanoparticle applications include: s : 5
S Often not well bond to surfaces * Mass-filtering (1-10nm) through Quadrupole mass filter setup. Bottom: S,
. ) . . (QMF) possible Typical signal from &
— Most processes show impurity of resulting nanoparticles
the QMF. N -
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— Cu-nanoparticles (catalyst) deposited onto Carbon support
* Cu enables more complex reactions, since CO adheres better than H (d)
— Multiple reactions expected in parallel Catroe

products + H,

CO, RR
products + H,

Figure 3: (a) Possible reactions on the catalyst in agueous solutions [2]. (b)

Anomality of Cu in respect to CO, reduction [3] and (c) the product selectivity of Cu-NPs |
sub-monolayer deposition of different sizes of nanoparticles produced through o L N’
inverse micelle encapsulation [4] . Si-wafer
(d) Schematic of the flow cell setup. (e) and (f) show SEM micrographs of the

Catholyte

top-view on Carbon support of the GDE and a side-view on a highly loaded (0.5M KHCO)
catalyst on Si-substrate, respectively. Cathode Anode
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Z : Figure 5: Faradaic efficiency of the catalyst over time for 3 different
w@ ” _ , , _ _ _ _ _ _ _ electrode designs. Changes over time demonstrate lack of catalyst stability
al bl Figure 4: Left: QMF diameter profile (a), signal for 4nm filtered particles over time with bias (b) and derived mass : . )
: i , , : _ , = _ in GAS-catalyst. The first catalyst corresponds to the 8nm, 300V bias
0L flux of 1.8nm and 8nm filtered particles. Right: Top-view SEM micrographs to the depositions corresponding to the " . : :
o o o o 4 e deposition (Figure 4) and the second one to the cross-section (Figure 3)
Slapodion fius [wii] mass-flux graphs shown in Figure 3 (c)
Magnetron sputtering promising method to produce nanoparticles for Challenges when using GAS:
catalysis due to: — Limited reproducibility and relatively low yield
— High purity of catalyst material — Issues with stability of catalyst during CO,-reduction

— Morphology and loading can be influenced
— Narrow size selection possible
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